Transcription profile during maternal to zygotic transition in the mouse embryo.

نویسندگان

  • Xing-Yu Li
  • Xiang-Shun Cui
  • Nam-Hyung Kim
چکیده

To gain insight into early embryo development, we used microarray technology to compare gene expression profiles in metaphase II oocytes and one- (1C), two- (2C) and four-cell (4C) embryos. Differences in spot intensities were normalised and grouped using Avadis Prophetic software platform (version 3.3; Strand Genomics, Bangalore, India) and categories were based on the PANTHER and Gene Ontology classification systems. We examined 6927 genes and identified those preferentially expressed in 1C or 2C embryos. We found 1261 genes that were more highly expressed (P < 0.05) in 1C compared with 2C embryos and 1480 genes showing enhanced expression in 2C embryos. Similarly, we investigated 6581 genes present in 2C and 4C embryos and identified 841 that are expressed to a greater extent at the 2C stage and 905 that are more highly expressed at the 4C stage. Using PANTHER classification, genes that were upregulated and downregulated in 2C embryos compared with 1C and 4C embryos were grouped according to their protein functions, which included developmental processes, electron transport, lipid, fatty acid and steroid metabolism, nucleoside, nucleotide and nucleic acid metabolism, protein metabolism and modification, signal transduction and transport, among others. Real time reverse transcription-polymerase chain reaction was performed to confirm differential expression of 14 selected genes. The identification of the genes being expressed will provide insight into the complex gene regulatory networks affecting zygotic genome activation and further development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unmasking Activation of the Zygotic Genome Using Chromosomal Deletions in the Drosophila Embryo

During the maternal-to-zygotic transition, a developing embryo integrates post-transcriptional regulation of maternal mRNAs with transcriptional activation of its own genome. By combining chromosomal ablation in Drosophila with microarray analysis, we characterized the basis of this integration. We show that the expression profile for at least one third of zygotically active genes is coupled to...

متن کامل

Identification of the zebrafish maternal and paternal transcriptomes

Transcription is an essential component of basic cellular and developmental processes. However, early embryonic development occurs in the absence of transcription and instead relies upon maternal mRNAs and proteins deposited in the egg during oocyte maturation. Although the early zebrafish embryo is competent to transcribe exogenous DNA, factors present in the embryo maintain genomic DNA in a s...

متن کامل

STAT Is an Essential Activator of the Zygotic Genome in the Early Drosophila Embryo

In many organisms, transcription of the zygotic genome begins during the maternal-to-zygotic transition (MZT), which is characterized by a dramatic increase in global transcriptional activities and coincides with embryonic stem cell differentiation. In Drosophila, it has been shown that maternal morphogen gradients and ubiquitously distributed general transcription factors may cooperate to upre...

متن کامل

Temporal Reciprocity of miRNAs and Their Targets during the Maternal-to-Zygotic Transition in Drosophila

During oogenesis, female animals load their eggs with messenger RNAs (mRNAs) that will be translated to produce new proteins in the developing embryo. Some of these maternally provided mRNAs are stable and continue to contribute to development long after the onset of transcription of the embryonic (zygotic) genome. However, a subset of maternal mRNAs are degraded during the transition from pure...

متن کامل

Time Course of Degradation and Deadenylation of Maternal c-mos and Cyclin A2 mRNA during Early Development of One-Cell Embryo in Mouse

Early in the development of many animals, before transcription begins, any change in the pattern of protein synthesis is attributed to a change in the translational activity or stability of mRNA in the egg and early embryo. As a result, translational control is critical for a variety of developmental decisions, including oocyte maturation and initiation of preimplantation development. In this s...

متن کامل

Timing of the maternal-to-zygotic transition during early seed development in maize.

In animals, early embryonic development is largely dependent on maternal transcripts synthesized during gametogenesis. Recent data in plants also suggest maternal control over early seed development, but the actual timing of zygotic genome activation is unclear. Here, we analyzed the timing of the maternal-to-zygotic transition during early Zea mays seed development. We show that for 16 genes e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Reproduction, fertility, and development

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2006